
jdenise@redhat.com

WildFly Glow
An evolution of WildFly provisioning

Agenda

● What is WildFly provisioning
● How WildFly Glow boosts the user experience
● WildFly Glow in action, demos!
● Current status

You are going to learn how to efficiently produce trimmed WildFly server
to run your applications

What is WildFly provisioning ?

● Ability to create a WildFly server installation on the fly
● Ability to choose the set of features you want to see present in the created

server
● Ability to extend the capabilities of WildFly server (e.g.: Datasources, keycloak

SAML)
● The produced server has a smaller size than a full installation, smaller memory

footprint
● Benefits: resource consumption, smaller attack surface, simpler server

configuration

https://github.com/wildfly-extras/wildfly-datasources-galleon-pack/
https://github.com/keycloak/keycloak/

How WildFly Provisioning is operated ?

● Galleon is the technology on which WildFly provisioning is based
○ Feature-packs: Server metadata container
○ Layers: A server feature/API (e.g.: jaxrs, jsf, ejb, …)

● Provisioning comes with some tools
■ Command Lines: Galleon CLI
■ Maven Plugins: Galleon Maven Plugin, WildFly Maven Plugin, WildFly Bootable JAR Maven

Plugin

https://docs.wildfly.org/galleon/
https://docs.wildfly.org/31/Galleon_Guide.html#WildFly_Galleon_feature-packs
https://docs.wildfly.org/31/Galleon_Guide.html#wildfly_layers
https://docs.wildfly.org/31/Galleon_Guide.html
https://github.com/wildfly/wildfly-maven-plugin
https://github.com/wildfly-extras/wildfly-jar-maven-plugin/
https://github.com/wildfly-extras/wildfly-jar-maven-plugin/

Provisioning workflow

WildFly feature-pack,
containing layers

Provisioning
tooling

Maven repos
containing

Galleon feature-packs

WildFly datasources
feature-pack,

containing layers

Produced WildFly
server

User configuration:
- WildFly feature-pack
- Extra feature-packs

(datasources, cloud, …)
- layers (jaxrs, ejb,

postgresql…)
 Other feature-packs

Issues with current WildFly provisioning

● Mainly at the user provisioning configuration level
● How to discover WildFly compatible Galleon feature-packs?
● How to discover the Galleon layers that my application requires to properly

work?
● Today use documentation, search for blogs and/or github projects to discover

extra feature-packs and combination of layers

https://docs.wildfly.org/31/Galleon_Guide.html#wildfly_galleon_layers

How to fix them ?

● We need a bridge between the deployed application(s) and the provisioned
server

● This is what WildFly Glow is offering, a bridge between the deployment and the
server to provision

https://github.com/wildfly/wildfly-glow

WildFly Glow

● Glow stands for “Galleon Layers Output from War”
○ Just a name, it also supports jar and ear.

● By scanning the deployment, it can produce the set of Galleon feature-packs
and Layers that your application requires

● Documentation reachable from WildFly Documentation

https://docs.wildfly.org/

WildFly Glow Features (1/2)

● Understands the connection that exists between Galleon layers and your
application

■ Java types and annotations in use
■ XML descriptors,
■ Properties files, …

● Can suggest interesting features not directly required by your application but
meaningful: SSL, Microprofile OpenAPI, WildFly CLI

● Can identify errors and suggest you ways to fix them (eg: missing datasource)

WildFly Glow Features (2/2)

● Handling of High Availability
○ WildFly Glow allows you to enable the “ha” profile to produce an High Available WildFly server

● Handling of 2 execution contexts
○ bare-metal (the default)
○ cloud, to execute on Openshift and/or Kubernetes.

● Handling of datasources
● A centralized knowledge of extra Galleon feature-packs compatible with

WildFly and WildFly Preview. Currently:
○ Cloud, datasources, Keycloak SAML, GRPc, MyFaces, Microprofile-GraphQL, Resteasy Spring

WildFly Glow tooling

● WildFly Glow CLI, a standalone tool to scan your deployment(s) to produce a
Galleon configuration, a WildFly server, a WildFly Bootable JAR or a docker
image (direct deployment to OpenShift in progress).

● Integration in WildFly Maven plugin, no more explicit feature-packs and
layers in the plugin configuration

● WildFly Glow Arquillian Maven plugin to scan your tests to produce WildFly
server required to execute your tests

WildFly Glow workflow

WildFly feature-pack,
containing layers

WildFly Glow
provisioning tooling

Maven repos
containing

Galleon feature-packs

WildFly datasources
feature-pack,

containing layers

Produced WildFly
server

Optional user
configuration:

- HA
- cloud

- add-ons
 Other feature-packs

Online knowledge of
WildFly/extra

feature-packs per
WildFly version

deployment

How does it work?

● Leverage Galleon provisioning artifacts (Feature-packs and Layers)
● Relies on rules included in each Galleon Layer

○ Rules captures the content expected inside the deployment for the layer to be required
○ Rules express the High Availability capability of a layer

● Introduce the notion of add-on to extend discovered layers with layers that
make sense according to the discovered ones

○ SSL, embedded/remote JMS brokers, postgresql/mysql/… datasources
○ WildFly CLI (jboss-cli, add-users, elytron tooling, .,..)

● Knows about High Availability, will automatically include HA Galleon layers
● Include built-in knowledge to identify missing datasources
● Relies on Jakarta EE core profile as the minimal server to enrich.

https://jakarta.ee/specifications/coreprofile/10/

Galleon Layers rules

● Implementation detail known by WildFly Glow
● If you develop WildFly feature-packs, have a look to their documentation
● Metadata added to layers definitions
● Associate to a layer the:

○ API usage
○ Deployment descriptors/files content

http://docs.wildfly.org/wildfly-galleon-feature-packs/

A registry of feature-packs

● WildFly server extra features should be packaged as Galleon feature-pack
● Then registered in the registry.
● Open to contribute feature-packs that would bring added value to WildFly
● Currently:

○ Keycloak SAML
○ Grpc
○ MyFaces
○ Datasources
○ Cloud
○ Microprofile graphql
○

https://github.com/wildfly/wildfly-galleon-feature-packs/tree/release

WildFly Glow CLI Demos

● Local (download wildfly-glow from its releases page)
○ ./wildfly-glow --help
○ ./wildfly-glow scan examples/kitchensink.war
○ ./wildfly-glow scan examples/kitchensink.war --ha
○ ./wildfly-glow scan examples/kitchensink.war --provision

BOOTABLE_JAR
○

● Cloud, Openshift sandbox
○ Use of cloud option to fine tune the server configuration + enable health checks.
○ ./wildfly-glow scan examples/kitchensink.war --cloud
○ ./wildfly-glow scan examples/kitchensink.war --cloud --provision

DOCKER_IMAGE
○ sh ./openshift/push-image.sh
○ helm install kitchensink -f ./openshift/ helm.yaml wildfly/wildfly

https://github.com/wildfly/wildfly-glow/releases
https://console.redhat.com/openshift/sandbox
https://gist.github.com/jfdenise/320072da1f2f38cc88c4d4442c8ef8fe
https://gist.github.com/jfdenise/b1d9579b64525fde62daad3fb26d12bb

Numbers and limitations

● We have observed a reduction of 5% to 55% for disk usage and 5% to 32% for
memory consumption with WildFly Glow compared to Galleon (based on
WildFly quickstarts).

● Interesting simple project that compares zipped distribution, vs Galleon vs
WildFly Glow.

● Limitations
○ We can’t discover layers when:

■ Java Reflection is used.
■ JNDI lookup is used. But we detect that JNDI API is used, advertise the usage points and

allow for explicit addition of layers.

https://github.com/kabir/vlog-glow/blob/main/README.md

WildFly Maven plugin example (4.2.x)

…
<feature-packs>
 <feature-pack>
<location>org.wildfly:wildfly-galleon-pack:31.0.0.Final</location>
 </feature-pack>
</feature-packs>
<layers>
 <layer>ee-core-profile-server</layer>
 <layer>jaxrs</layer>
 <layer>ejb</layer>
 <layer>ejb-dist-cache</layer>
 <layer>jpa-distributed</layer>
</layers>
<excludedLayers>
 <layer>ejb-local-cache</layer>
</excludedLayers>
…

Same example, WildFly Maven plugin (5.x)

…
<discover-provisioning-info>
 <profile>ha</profile>
</discover-provisioning-info>
…

You can find examples in the WildFly Quickstart Glow Preview branch

https://github.com/wildfly/quickstart/tree/glow-preview

Datasource support

● WildFly Glow detects that your deployment uses datasources
● It will suggest the set of known add-ons allowing to connect to database
● During second execution, the set of env variables to use to configure the

datasource are displayed
● WildFly Glow prints the pieces found in your deployment (e.g.: JNDI name of

the datasource)
● When starting the server you must set the env variables that WildFly Glow

advertised

WildFly Glow CLI Database Demo

● docker run --rm -p 5432:5432 -e POSTGRES_PASSWORD=frdemo -e
POSTGRES_USER=frdemo postgres

● ./wildfly-glow scan examples/todo-backend.war
● ./wildfly-glow scan examples/todo-backend.war --add-ons=postgresql
● ./wildfly-glow scan examples/todo-backend.war --add-ons=postgresql

--provision=SERVER
● POSTGRESQL_DATABASE=frdemo POSTGRESQL_USER=frdemo

POSTGRESQL_PASSWORD=frdemo
POSTGRESQL_JNDI=java:jboss/datasources/ToDos sh
server-31.0.1.Final/bin/standalone.sh &

● curl -X POST -H "Content-Type: application/json" -d '{"title":
"WildFly Mini Conference, March 2024!"}'
http://localhost:8080/todo-backend

● curl http://127.0.0.1:8080/todo-backend

Messaging add-ons

● WildFly Glow can identify that Messaging is required.
● Will advise the usage of an embedded Broker or (disjonctif) a remote Broker.

WildFly Glow CLI, Messaging demo

● docker run --rm --name artemis -e AMQ_USER=admin -e
AMQ_PASSWORD=admin -p8161:8161 -p61616:61616 -e
AMQ_DATA_DIR=/home/jboss/data
quay.io/artemiscloud/activemq-artemis-broker-kubernetes

● ./wildfly-glow scan examples/remote-helloworld-mdb.war
● ./wildfly-glow scan examples/remote-helloworld-mdb.war

--add-ons=remote-activemq
● ./wildfly-glow scan examples/remote-helloworld-mdb.war

--add-ons=remote-activemq --provision=SERVER
● sh server-31.0.1.Final/bin/standalone.sh &
● curl

http://localhost:8080/remote-helloworld-mdb/HelloWorldMDBServletClien
t

WildFly quickstarts migrated to use Glow

● All applications used in these demos are from WildFly quickstarts
● They have been ported to use WildFly Glow
● Currently a preview branch
● 100% of quickstarts migrated
● Best source of information to help you start with WildFly Glow integration in

Maven build

https://github.com/wildfly/quickstart
https://github.com/wildfly/quickstart/tree/glow-preview

Native deployment to OpenShift

● That is a work in progress specified by this Issue.
● Current solution

○ Relies on locally built Docker image
○ Needs to push the image to the OpenShift cluster
○ Require that you set env variables to bind deployment to third parties (e.g.: PostgreSQL)

● Native OpenShift Support
○ Introduce a new type of provisioning: OPENSHIFT
○ No need for Docker, automated provisioning and deployment in OpenShift cluster
○ Handle third parties deployments (PostgreSQL DB, Keycloak server, Artemis JMS Broker…)

● Well suited for OpenShift testing/investigations
● Stay tuned, will be released in next Beta (very soon)

https://github.com/wildfly/wildfly-glow/issues/49

Status

● Beta level for WildFly 31
○ WildFly Glow is currently 1.0.0.Beta9
○ WildFly Maven Plugin 5.0.0.Beta3
○ All WildFly quickstarts ported to use WildFly Glow in preview branch
○ WildFly 31 testsuite has been ported to use WildFly Glow where applicable
○ WildFly Galleon feature-packs registry open to contributions

● Final level expected for WildFly 32
○ Final provisioning tooling
○ WildFly Quickstarts migrated to WildFly Glow and latest provisioning tooling

https://github.com/wildfly/wildfly/tree/main/testsuite
https://github.com/wildfly/wildfly-galleon-feature-packs/tree/release

Resources

● WildFly Glow
○ Project: https://github.com/wildfly/wildfly-glow
○ Online documentation: http://docs.wildfly.org/wildfly-glow

● Recent blog posts:
○ Introduction
○ Vlog
○ Testing
○ Master the Boss article

● WildFly Galleon feature-packs registry
○ Project: https://github.com/wildfly/wildfly-galleon-feature-packs
○ Online documentation: http://docs.wildfly.org/wildfly-galleon-feature-packs

● WildFly Maven Plugin
○ Project: https://github.com/wildfly/wildfly-maven-plugin
○ Online documentation: https://docs.wildfly.org/wildfly-maven-plugin/releases/5.0/

● WildFly quickstarts
○ Migration to WildFly Glow: https://github.com/wildfly/quickstart/tree/glow-preview

● WildFly layers rules examples:
○ jaxrs: https://github.com/wildfly/wildfly/blob/main/ee-feature-pack/galleon-shared/src/main/resources/layers/standalone/jaxrs/layer-spec.xml
○ ejb: https://github.com/wildfly/wildfly/blob/main/ee-feature-pack/galleon-shared/src/main/resources/layers/standalone/ejb/layer-spec.xml

https://github.com/wildfly/wildfly-glow
http://docs.wildfly.org/wildfly-glow
https://www.wildfly.org/news/2024/01/29/wildfly-glow/
https://www.youtube.com/watch?v=kt8pTDmTitw
https://www.wildfly.org/news/2024/02/05/testing-with-wildfly-glow/
https://www.mastertheboss.com/jbossas/jboss-configuration/wildfly-glow-next-gen-evolution-in-provisioning
https://github.com/wildfly/wildfly-galleon-feature-packs
http://docs.wildfly.org/wildfly-galleon-feature-packs
https://github.com/wildfly/wildfly-maven-plugin
https://docs.wildfly.org/wildfly-maven-plugin/releases/5.0/
https://github.com/wildfly/quickstart/tree/glow-preview
https://github.com/wildfly/wildfly/blob/main/ee-feature-pack/galleon-shared/src/main/resources/layers/standalone/jaxrs/layer-spec.xml
https://github.com/wildfly/wildfly/blob/main/ee-feature-pack/galleon-shared/src/main/resources/layers/standalone/ejb/layer-spec.xml

THANK-YOU!
Q&A

Feedback form: https://tinyurl.com/wildfly

https://tinyurl.com/wildfly

